

Wheel-Rail Interaction Fundamentals

Kevin Oldknow, Ph.D., P.Eng.

Principal Engineer, Wheel/Rail Interface L.B. Foster Rail Technologies

WRI 2016

Overview

• Part 1

- The Wheel / Rail Interface and Key Terminology
- The Contact Patch and Contact Pressures
- Creep, Traction Forces and Friction
- Wheelset Geometry and Effective Conicity

• Part 2

- Vehicle Steering and Curving Forces
- Wheel and Rail Wear Mechanisms
- Shakedown and Rolling Contact Fatigue
- Part 3
 - The Third Body Layer, Traction/Creepage and Friction Management
 - Curving Noise
 - Corrugation

PRINCIPLES COURSE . MAY 3, 2016

This three-part session will provide an introduction to several fundamental aspects of vehicle-track interaction at the wheel/rail interface

WRI 2016

Three questions that we will aim to answer....

Question #1: How can we estimate the lateral forces (and L/V ratios) that a vehicle is exerting on the track?

WRI 2016

Question #2: How can we determine if there is a risk of rolling contact fatigue (RCF) developing under a given set of vehicle/track conditions?

WRI 2016

Question #3: How is the noise captured in these two sound files generated at the wheel/rail interface?

Overview

• Part 1

- The Wheel / Rail Interface and Key Terminology
- The Contact Patch and Contact Pressures
- Creep, Traction Forces and Friction
- Wheelset Geometry and Effective Conicity

Back to basics...

- Tangent
- Curve •
- Spiral ۲
- **High Rail** •
- Low Rail •
- **Superelevation** • (aka Cant)
- **Rail Cant** •

The Contact Patch and Contact Pressures

• Question #1: What is the length (area) of contact between a circle (cylinder) and a tangent line (plane)?

- Question #2: Given Force and Area, how do we calculate pressure?
- Question #3: If a circular body (~wheel) is brought into contact with a linear body (~rail) with a vertical force F and zero contact area, what is the resulting calculated pressure?

Hertzian Contact

- Hertzian Contact (1882) describes the pressures, stresses and deformations that occur when curved elastic bodies are brought into contact.
- "Contact Patches" tend to be elliptical
- This yields **parabolic** contact pressures

• Contact theory was subsequently broadened to apply to rolling contact (Carter and Fromm) with non-elliptical contact and arbitrary creepage (Kalker; *more on this later...*)

WRI 2016

Creepage, Friction and Traction Forces

- Longitudinal Creepage
- The Traction-Creepage Curve
- Lateral Creepage
- Spin Creepage
- Friction at the Wheel-Rail Interface

What does Longitudinal Creepage *mean*?...

WRI 2016

What does Longitudinal Creepage mean?...

- The frictional contact problem (Carter and Fromm, 1926) relates frictional forces to velocity differences between bodies in rolling contact.
- Longitudinal Creepage can be calculated as:

Rω-V V

- In <u>adhesion</u>, 1% longitudinal creepage means that a wheel would **turn 101 times** while traveling a distance of 100 circumferences.
- In <u>braking</u>, -1% longitudinal creepage means that a wheel would turn 99 times while traveling a distance of 100 circumferences.

Lateral creepage Imagine pushing a lawnmower across a steep slope...

Spin Creepage Think of spinning a coin on a tabletop....

Rolling vs. Sliding Friction They are <u>not</u> the same!

Traction/Creepage Curves

"Heuristic" expressions used for the saturation and physical meaning of the different parts.

Vehicle Steering and Curving Forces

• The wheelset

Displaced wheel set

Theoretical Equilibrium

WRI 2016

Effective Conicity

Effective Conicity (Worn Wheels)

VAMPIRE Plot

Important Concept:

- Sometimes, forces give rise to creepage (e.g. traction, braking, steering)
- Other times, creepage gives rise to forces (e.g. curving)

Effect of rolling radius difference on steering moment

Figure 2: effect of rolling radius difference on longitudinal component of creepage force

Tangent Running and Stability

And now for something completely different...

Questions & Discussion

Overview

• Part 2

- Vehicle Steering and Curving Forces
- Wheel and Rail Wear Mechanisms
- Shakedown and Rolling Contact Fatigue

Impacts of High Lateral Loads: Rail Rollover / Track Spread Derailments

WRI 2016

Impacts of High Lateral Loads: Plate Cutting, Gauge Widening

WRI 2016

Impacts of High Lateral Loads: Wheel Climb Derailments

Impacts of High Lateral Loads: Fastener Fatigue / Clip Breakage

WRI 2016

Returning to Question #1: How can we estimate the lateral forces (and L/V ratios) that a vehicle is exerting on the track?

WRI 2016

How does this compare with simulation results?

Curving Forces (201)

• Remember this?

How often to we see a single (isolated) wheel set in operation?

Hopefully not very often!

Factors Affecting Curving Forces

Gravity

- Creepage and friction at the gage face / wheel flange • interface (e.g. GF Lubrication -> increased L/V)
- Speed (relative to superelevation) ٠ and centrifugal forces
- **Coupler Forces** •
- **Buff & Drag Forces** •
- Vehicle / Track Dynamics:
 - Hunting
 - Bounce
 - Pitch

 - Roll

RINCIPLES COURSE . MAY 3, 2016

- E_a = Average elevation of the outside rail (inches).
- D = Degree of curvature (degrees).

An example...

• Why are the lateral forces measured a few cribs apart so different?

Mystery solved...

WRI 2016

Rail and Wheel Wear

WRI 2016

 $V = C \int_{TT}^{Vl}$

- Wear Types:
 - Adhesion
 - Surface Fatigue
 - Abrasion
 - Corrosion
 - Rolling Contact Fatigue
 - Plastic Flow
- "Archard" Wear Law:
 - V = volume of wear
 - -N = normal load
 - *l* = sliding distance (i.e. creepage)
 - H = hardness
 - c = wear coefficient

c proportional to COF

Shakedown and Rolling Contact Fatigue (RCF)

Recall: Hertzian Contact

- "Contact Patches" tend to be elliptical
- This yields **parabolic** contact pressures

The Contact Patch and Contact Pressures

The Contact Patch and Contact Pressures

Example calculation: Average and Peak Pressure

- Let's assume a circular contact patch, with a radius of **0.28**" (7 mm)
- The contact area is then: 0.24 in² (154 mm²)
- Assuming a HAL vehicle weight (gross) of 286,000 lbs, we have a nominal wheel load of 35,750 lbs, i.e. 35.75 kips (159 kN)
- The resulting average contact pressure (Pavg) is then: 150 ksi (1,033 MPa)
- This gives us a peak contact pressure (Po) of: 225 ksi (1,550 MPa)
- What is the shear yield strength of rail steel?*
- What's going on?

*Magel, E., Sroba, P., Sawley, K. and Kalousek, J. (2004) Control of Rolling Contact Fatigue of Rails, Proceedings of the 2004 AREMA Annual Conference, Nashville, TN, September 19-22, 2004

Steel	Hardness (Brinnell)	К	
		ksi	MPa
"Standard"	260-280	65-70	448-483
"Intermediate"	320-340	80-85	552-587
"Premium"	340-380	85-95	587-656
"HE Premium"	380-400	95-100	656-691

60

WRI 2016

Tensile Testing (1-D loading)

Cylindrical Contact with Elastic Half-Space (2-D loading)

Spherical Contact with Elastic Half-Space (3-D loading)

RCF Development: Contact Pressures, Tractions and Stresses

- Cylindrical contact pressure / stress distribution with no tangential traction
- Cylindrical pressure / stress distribution with tangential traction

Traction coefficient, f = 0.2

WRI 2016

PRINCIPLES COURSE . MAY 3, 2016

WRI 2016

Hydropressurization: effect of liquids on crack growth

Figure 8: Influence of grease and water on crack propagation through a) control of crackface friction, and b) hydraulic pressurization of the crack tip.

Wear and RCF wheel/rail rig test results

Recalling Question #2: How can we determine if there is a risk of rolling contact fatigue (RCF) developing under a given set of vehicle/track conditions?

WRI 2016

- Consider a heavy haul railway site, where heavy axle load vehicles (286,000 lb gross weight) with a typical wheelbase of 70" traverse a 3 degree curve at balance speed.
- Wheel / rail profiles and vehicle steering behavior are such that the curve can be considered "mild"
- The **contact area** at each wheel tread / low rail interface is approximately circular, with a typical **radius of 7mm**.
- The rail steel can be assumed to have a **shear yield strength** of **k=70 ksi**.
- The rail surface is dry, with a nominal COF of $\mu = 0.6$
- How would you assess the risk of **low rail** RCF formation and growth under these conditions?

Estimating lateral creepage, traction ratio & contact pressure:

• In "mild" curving, leading axle angle of attack: $\alpha \sim \arcsin(L/R) \sim L/R = 0.0030 \text{ Rad} (3.0 \text{ mRad})$

Estimating the traction ratio (L/V)

*Note, we have neglected longitudinal and spin creep...

Questions & Discussion

Overview

• Part 3

Traction/Creepage, The Third Body Layer and Friction Management

- Curving Noise
- Corrugation

Third Body at Wheel/Rail Contact

- Third Body is made up of iron oxides, sands, wet paste, leaves etc....
- Third Body separates wheel and rail surface, accommodates velocity differences and determines wheel/rail friction.
- Wheel/Rail friction depends on the shear properties / composition of the third body layer.

Third Body Layer – Micron Scale

Y.Berthier, S. Decartes, M.Busquet et al. (2004). The Role and Effects of the third body in the wheel rail interaction. *Fatigue Fract. Eng. Mater Struct.* 27, 423-436

Key Points

- The third body layer accommodates velocity differences between the wheel and rail (i.e. creepage)
- Friction forces are determined by the shear properties of the third body layer and its response to shear displacement (creepage)
- Friction management is the intentional manipulation of the shear properties of the third body layer.

Managing friction: two distinct interfaces

- 1. Gauge Face / Wheel Flange Lubrication
- 2. Top of Rail / Wheel Tread Friction Control

Controlling Friction at the Wheel/Rail Interface

Gage Face (GF) Friction Impacts:

- Rail / Wheel Wear (Gage Face, Flange)
- RCF Development
- Fuel Efficiency
- Flange Noise
- Derailment Potential (Wheel Climb)
- Lateral Forces (indirect)

PRINCIPLES COURSE . MAY 3, 2016

Top of Rail (TOR) Friction Impacts:

- Lateral Forces
- Rail / Wheel Wear (TOR, Tread)
- RCF Development
- Fuel Efficiency
- Squeal Noise
- Flange Noise (indirect)
- Corrugations
- Hunting
- Derailment Potential (L/V, rail rollover)

Not Enough

Too Much

Ideal Targets

Friction Management Approaches

WRI 2016

WRI 2016

WRI 2016

WRI 2016

Mobile Gage Face / Wheel Flange Lubrication Solid Stick (LCF) Lubrication

WRI 2016

Solid stick application system

- Mechanical bracket / applicator
- Solid stick applied by constant force spring.

High speed train

Metro system

Mobile Top of Rail Friction Management Car & Locomotive Mounted

Mobile Gage Face Lubrication (or Top of Rail Friction Control) Hi-Rail Mounted Delivery Systems

WRI 2016

Top of rail friction control with train mounted solid stick tread friction modifier

WRI 2016

Maximizing system performance

- Critical areas to address include:
 - Assessment and Implementation of Solutions
 - Keeping units filled with lubricants / friction modifiers
 - Ensuring adequate year-round power supply & charging
 - Efficient removal / reinstallation to accommodate track programs
 - Proactive Maintenance / Efficient response to equipment damage

96

PRINCIPLES COURSE . MAY 3, 2016

Assessment & Implementation

97

Spectral range for different noise types

<u>Noise type</u>	<u>Frequency range, Hz</u>
Rolling	30 -2500
Rumble (including corrugations)	200 - 1000
Flat spots	50 -250 (speed dependant)
Ground Borne Vibrations	30 - 200
Top of rail squeal	1000 - 5000
Flanging noise	5000 - 10000

PRINCIPLES COURSE . MAY 3, 2016

Top of rail wheel squeal noise

- High pitched, tonal sque (predominantly 1000 5000 Hz)
- Prevalent noise mechanism in "problem" curves, usually < 300m radius
- Related to both negative friction characteristics of Third Body at tread / top of rail interface and absolute friction level
 - Stick-slip oscillations

Flanging noise

- Typically "buzzing" OR "hissing" sound, characterized by broadband high frequency components (>5000 Hz)
- Affected by:
 - Lateral forces: related to friction on the top of the low rail
 - Flanging forces: related to friction on top of low and high rails
 - Friction at the flange / gauge face interface

100

* Replotted from: "Matsumoto a, Sato Y, Ono H, Wang Y, Yamamoto Y, Tanimoto M & Oka Y, Creep force characteristics between rail and wheel on scaled model, *Wear*, Vol 253, Issues 1-2, July 2002, pp 199-203

Sound spectral distribution for different wheel / rail systems

Effect of friction characteristics on spectral sound distribution: Trams

Effect of friction characteristics on spectral sound distribution: Trams

"Low Frequency" Stick-Slip / Noise

* Video used with permission, Brad Kerchof, Norfolk Southern

105

Corrugations (Short Pitch)

Corrugation formation: common threads

							Treatments ¹	
Туре	Wavelength- fixing mechanism	Where?	Typical frequency (Hz)	Damage mechanism	Relevant figures	References	Demonstrably successful	Should be successful
1 Pinned– pinned resonance ('roaring rails')	Pinned– pinned resonance	Straight track, high rail of curves	400-1200	Wear	2–6	[5–23]	Hard rails, control friction	Increase pinned– pinned frequency so that corru- gation would be <20 mm wavelength
2 Rutting	Second torsional resonance of driven axles	Low rail of curves	250–400	Wear	2, 7–11	[5, 6, 24–36]	Friction modifier, hard rails, reduce cant excess, asymmetric profiling in curves	Reduce applied traction in curv- ing, improve curving behaviour of vehicles, dynamic vibration absorber
3 Other P2 resonance	P2 resonance	Straight track or high rail in curves	50–100	Wear	3, 6, 17, 18	[4, 24, 37]	Hard rails, highly resilient trackforms	Reduce unsprung mass
4 Heavy haul	P2 resonance	Straight track or curves	50–100	Plastic flow in troughs	10, 12–14	[38-40]	Hard rails	Reduce cant excess when corrugation is on low rail
5 Light rail	P2 resonance	Straight track or curves	50–100	Plastic bending	15, 16	[41]	Increase rail strength and EI	Reduce unsprung mass

PRINCIPLES COURSE . MAY 3, 2016

Pinned-Pinned corrugation ("roaring rail")

- At the pinned-pinned resonance, rail vibrates as it were a beam almost pinned at the ties / sleepers
- Highest frequency corrugation type: 400 1200 Hz
- Modulation at tie / sleeper spacing support appears dynamically stiff so vertical dynamic loads appear greater

Rutting

- •Typically appears on low rail
- •Frequency corresponds to second torsional resonance of driven wheelsets
- •Very common on metros
- •Roll-slip oscillations are central to mechanism

First axle torsional mode

Second axle torsional mode

110

WRI 2016

Recalling Question #3: How is the noise captured in these two sound files generated at the wheel/rail interface?

111

WRI 2016

LBFoster

Summary

- Returning to our objectives, we have reviewed:
 - The Wheel / Rail Interface and Key Terminology
 - The Contact Patch and Contact Pressures
 - Creep, Traction Forces and Friction
 - Wheelset Geometry and Effective Conicity
 - Vehicle Steering and Curving Forces
 - Wheel and Rail Wear Mechanisms
 - Shakedown and Rolling Contact Fatigue
 - The Third Body Layer, Traction/Creepage and Friction Management
 - Curving Noise
 - Corrugation
- The intent has been to establish a framework to understand, articulate, quantify and identify key
 phenomena that affect the practical operation, economics and safety of heavy haul and passenger rail
 systems.

112

PRINCIPLES COURSE . MAY 3, 2016

Questions & Discussion

113