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Overview	
•  Part	1	

–  The	Wheel	/	Rail	Interface	and	Key	Terminology	
–  The	Contact	Patch	and	Contact	Pressures	
–  Creep,	TracHon	Forces	and	FricHon	
–  Wheelset	Geometry	and	EffecHve	Conicity		

•  Part	2	
–  Vehicle	Steering	and	Curving	Forces	
–  Wheel	and	Rail	Wear	Mechanisms		
–  Shakedown	and	Rolling	Contact	FaHgue	

•  Part	3	
–  The	Third	Body	Layer,	TracHon/Creepage	and	FricHon	Management	
–  Curving	Noise	
–  CorrugaHon	
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This	three-part	session	will	
provide	an	introducHon	to	
several	fundamental	aspects	
of	vehicle-track	interacHon	at	
the	wheel/rail	interface	



Three	ques/ons	that	we	
will	aim	to	answer….	
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Ques/on	#1:		How	can	we	es/mate	the	lateral	forces	
(and	L/V	ra/os)	that	a	vehicle	is	exer/ng	on	the	

track?	
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Ques/on	#2:		How	can	we	determine	if	there	is	a	risk	
of	rolling	contact	fa/gue	(RCF)	developing	under	a	

given	set	of	vehicle/track	condi/ons?	
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Ques/on	#3:		How	is	the	noise	captured	in	these	two	
sound	files	generated	at	the	wheel/rail	interface?	

•  File	#1:	

•  File	#2:	
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Overview	
•  Part	1	

–  The	Wheel	/	Rail	Interface	and	Key	Terminology	
–  The	Contact	Patch	and	Contact	Pressures	
–  Creep,	TracHon	Forces	and	FricHon	
–  Wheelset	Geometry	and	EffecHve	Conicity		
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•  Tangent	
•  Curve	
•  Spiral	
•  High	Rail	
•  Low	Rail	
•  SuperelevaHon		

(aka	Cant)	
•  Rail	Cant	

Back	to	basics…	
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The	Wheel	/	Rail	Interface	and	Key	Terminology	

Field	Side	 Gage	Side	

Back	of	
Flange	
(BoF)	

Flange	
Face	Flange	

Root	Ancillary	
Tread	

Gage	Face	

Gage	Corner	

Mid-Gage	Ball	/	Crown	/	Top	of	Rail	
(TOR)	

Back-to-Back		
Wheel	Spacing	

Track	Gage	
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The	Wheel	/	Rail	Interface	and	Key	Terminology		
(e.g.	Low	Rail	Contact)	

“Lightly”	
Worn	

“Heavily”	
Worn	
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The	Wheel	/	Rail	Interface	and	Key	Terminology	(e.g.	High	Rail	Contact)	
“Lightly”	
Worn	

“Heavily”	
Worn	
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The	Contact	Patch	and	Contact	Pressures	

•  QuesHon	#1:		What	is	the	length	(area)	of	contact	between	a	
circle	(cylinder)	and	a	tangent	line	(plane)?	

•  QuesHon	#2:		Given	Force	and	Area,	how	do	we	calculate	
pressure?	

•  QuesHon	#3:		If	a	circular	body	(~wheel)	is	brought	into	
contact	with	a	linear	body	(~rail)	with	a	verHcal	force	F	and	
zero	contact	area,	what	is	the	resulHng	calculated	pressure?	
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Hertzian	Contact	
•  Hertzian	Contact	(1882)	describes	the	pressures,	stresses	and	deformaHons	that	

occur	when	curved	elasHc	bodies	are	brought	into	contact.	

•  “Contact	Patches”	tend	to	be	ellip/cal	

•  This	yields	parabolic	contact	pressures	

•  Contact	theory	was	subsequently	broadened	to	apply	to	rolling	contact	(Carter	and	
Fromm)	with	non-ellipHcal	contact	and	arbitrary	creepage	(Kalker;	more	on	this	
later…)	

Pavg	

Po=3/2Pavg	
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Creepage,	FricHon	and	TracHon	Forces	
•  Longitudinal	Creepage	
•  The	TracHon-Creepage	Curve	
•  Lateral	Creepage	
•  Spin	Creepage	
•  FricHon	at	the	Wheel-Rail	Interface	
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What	does	Longitudinal	Creepage	mean?...	
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What	does	Longitudinal	Creepage	mean?...	

•  The	fricHonal	contact	problem	(Carter	and	Fromm,	1926)	relates	fricHonal	forces	
to	velocity	differences	between	bodies	in	rolling	contact.	

•  Longitudinal	Creepage	can	be	calculated	as:	
	
•  In	adhesion,	1%	longitudinal	creepage	means	that	a	wheel	would	turn	101	/mes	

while	traveling	a	distance	of	100	circumferences.	
	
•  In	braking,	-1%	longitudinal	creepage	means	that	a	wheel	would	turn	99	/mes	

while	traveling	a	distance	of	100	circumferences.	

Rω-V	
V	

16	



“Free	Rolling”	

Wheel	

Rail	

Third	Body	Layer	

Rω=V	
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“Small”	PosiHve	(Longitudinal)		
Creepage	

Wheel	

Rail	

Third	Body	Layer	

Rω>V	
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“Large”	PosiHve	(Longitudinal)		
Creepage	

Wheel	

Rail	

Third	Body	Layer	

Rω>V	
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The	TracHon-Creepage	
Curve	

Rolling	DirecHon	

µN	

Adhesion	
Microslip	

Longitudinal	
Creepage	
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Lateral	creepage	
Imagine	pushing	a	lawnmower	across	a	steep	slope…	

OK,	but	when	does	this	
occur	at	the	WRI?...	
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Steering	in	“Steady	State”	Curving	
(“Mild”	Curves)	

Angle	of	
Amack	
(AoA)	
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Steering	in	“Steady	State”	Curving	
(“Sharp”	Curves)	

Angle	of	
Amack	
(AoA)	
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Steering	in	“Steady	State”	Curving	
(“Very	Sharp”	Curves)	

Angle	of	
Amack	
(AoA)	
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Spin	Creepage	
Think	of	spinning	a	coin	on	a	tabletop….	

OK,	but	when	
does	this	occur	
at	the	WRI?...	
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Rolling	vs.	Sliding	FricHon	
They	are	not	the	same!	

creep:	
Rω-V	
V	

R	(radius)	

ω	(rotaHonal	
speed)	

V		
	

(forward	velocity)	
V		
	

(sliding	velocity)	
N		

(normal	load)	

N		
(normal	load)	

f	(fricHon	force)	
=	f(creep)	≠	simply	μN	

f	(fricHon	force)	
≈	simply	μN	

fric2on	force	shown	as	
ac2ng	on	wheel	for	
posi2ve	creep	

fric2on	force	shown	as	
ac2ng	on	block	for	
posi2ve	sliding	velocity	

μ:	coefficient	of	(sliding)	fricHon	
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TracHon/Creepage	Curves	
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Vehicle	Steering	and	Curving	Forces	

•  The	wheelset	
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Displaced	wheel	set		

λ	=	effecHve	conicity	

r0	=	wheel	radius	of		

undisplaced	
wheelset	

R	=	curve	radius	

L0	=	half	gauge	
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TheoreHcal	Equilibrium	
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EffecHve	Conicity	
V a m p ir e 	P r o CONTACT DATA PLOTTING

Rolling Radius Difference

4 Oct 2007
9:55:07 AM

Pregrind - Rolling Radius Dif f erence
Trial End - Rolling Radius Dif f erence
Postgrind - Rolling Radius Dif f erence

-15 -10 -5 5 10 15

-10

-5

5

10

mm

mm
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EffecHve	Conicity	(Worn	Wheels)	
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Important	Concept:	
	
•  SomeHmes,	forces	give	rise	to	creepage	(e.g.	tracHon,	braking,	steering)	
	

•  Other	Hmes,	creepage	gives	rise	to	forces	(e.g.	curving)	
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Effect	of	rolling	radius	difference	on	steering	moment	
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Tangent	Running	and	Stability	

•  Lateral	displacement		
→	ΔR mismatch		
→	fricHon	forces	
→	steering	moment	

•  Wheelset passes through 
central position with lateral 
velocity. 

•  At low speeds, oscillations 
decay. 

•  Above critical hunting 
speed, oscillations persist.	

x

y
z

displacement 

forward 
velocity 

longitudinal  
friction 
forces 
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And	now	for	something	
completely	different…	
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QuesHons	&	Discussion	
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Overview	

•  Part	2	
–  Vehicle	Steering	and	Curving	Forces	
–  Wheel	and	Rail	Wear	Mechanisms		
–  Shakedown	and	Rolling	Contact	FaHgue	
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Flange	Force	

Curving	Forces	(101)		

FricHon	Forces	
(Lateral	Creepage	
from	AoA)	

AnH-Steering	Moment	
(Longitudinal	Creepage	from	
mismatched	rolling	radii)	

Track	Spreading	
Forces	

DirecHon	of	Travel	

AoA	
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Impacts	of	High	Lateral	Loads:	
Rail	Rollover	/	Track	Spread	Derailments	
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Impacts	of	High	Lateral	Loads:	
Plate	Cuung,	Gauge	Widening	
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Impacts	of	High	Lateral	Loads:	
Wheel	Climb	Derailments	

0
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Impacts	of	High	Lateral	Loads:	Fastener	FaHgue	/	Clip	Breakage	
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Returning	to	Ques/on	#1:		How	can	we	es/mate	the	
lateral	forces	(and	L/V	ra/os)	that	a	vehicle	is	exer/ng	

on	the	track?	
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EsHmaHng	AoA	and	Lateral	Creepage	in	a	“Sharp”	Curve	

Curve Radius, R 

Wheelbase, 2L 

Angle of Attack, α 

V 

•  Leading	Axle	angle	of	aaack:	
	 	α	~	arcsin(2L/R)	~	2L/R	=	0.0061	Rad	(6.1	mRad)	

•  Lateral	Creepage	at	TOR	contact:	
	 	Vlat/V	~	2L/R	~	α	=	0.61%	

α

•  Example:	
6o	curve	(R	=	955’)	
70”	wheelbase	(2L	=	5.83’)	
μTOR	=	0.5	(dry)	
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EsHmaHng	Low	Rail	L/V	and	Lateral	Force	

L/V	

Creep	

μ	
At	high	creep	L/V	~	μ	

At	low	creep	L/V	~	const*creep	

~1(%)	

Angle	of	
Amack	
(AoA)	

•  At	0.61%	creep:	
L/V	=	______	μ	
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How	does	this	compare	with	simulaHon	results?	

48	

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 50 100 150 200 250

VAMPIRE®	Simulation:	Low	Rail	L/V
6o curve	(R=955'),	SE	=	3.9",	Speed	=	30mph,	μTOR=0.5,	μGF=0.15

Axle	1	LR	L/V Axle	2	LR	L/V Axle	3	LR	L/V Axle	4	LR	L/V
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Curving	Forces	(201)	
•  Remember	this?	

How	o{en	to	we	
see	a	single	
(isolated)	wheel	
set	in	operaHon?	

Hopefully	not	
very	o{en!	
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Factors	AffecHng	Curving	Forces	
•  Creepage	and	fricHon	at	the	gage	face	/	wheel	flange		

interface	(e.g.	GF	LubricaHon	->	increased	L/V)	

•  Speed	(relaHve	to	superelevaHon)		
and	centrifugal	forces	

•  Coupler	Forces	

•  Buff	&	Drag	Forces	

•  Vehicle	/	Track	Dynamics:	
–  HunHng	
–  Bounce	
–  Pitch	
–  Roll	
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An	example…	
•  Why	are	the	lateral	forces	measured	a	
few	cribs	apart	so	different?	
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Mystery	solved…	
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Rail	and	Wheel	Wear	
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Rail	and	Wheel	Wear	

c  proportional to 
COF  

N 

l 

H
NlcV =•  “Archard” Wear Law: 

–  V = volume of wear 
–  N = normal load 
–  l = sliding distance (i.e. creepage) 
–  H = hardness 
–  c = wear coefficient 

•  Wear Types: 
–  Adhesion 
–  Surface Fatigue 
–  Abrasion 
–  Corrosion 
–  Rolling Contact Fatigue 
–  Plastic Flow 
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Wear	regimes	

T	=	TracHve	force	
ү	=	Slip	
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Shakedown	and	Rolling	
Contact	FaHgue	(RCF)	
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Recall:	Hertzian	Contact	
•  “Contact	Patches”	tend	to	be	ellip/cal	

•  This	yields	parabolic	contact	pressures	

Pavg	

Po=3/2Pavg	
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The	Contact	Patch	and	Contact	Pressures	
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The	Contact	Patch	and	Contact	Pressures	

Low	Rail	Contact	
Area,	mm2	
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Example	calculaHon:	Average	and	Peak	Pressure	
•  Let’s	assume	a	circular	contact	patch,	with	a	radius	of	0.28”	(7	mm)	
•  The	contact	area	is	then:			0.24	in2	(154	mm2)	
•  Assuming	a	HAL	vehicle	weight	(gross)	of	286,000	lbs,	we	have	a	nominal	wheel	load	

of	35,750	lbs,	i.e.	35.75	kips	(159	kN)	
•  The	resulHng	average	contact	pressure	(Pavg)	is	then:		150	ksi	(1,033	MPa)	
•  This	gives	us	a	peak	contact	pressure	(Po)	of:		225	ksi	(1,550	MPa)	

•  What	is	the	shear	yield	strength	of	rail	steel?*	
•  What’s	going	on?	

*Magel,	E.,	Sroba,	P.,	Sawley,	K.	
and	Kalousek,	J.	(2004)	Control	of	
Rolling	Contact	Fa2gue	of	Rails,	
Proceedings	of	the	2004	AREMA	
Annual	Conference,	Nashville,	TN,	
September	19-22,	2004	

Steel	 Hardness	
(Brinnell)	

K	

ksi	 MPa	

“Standard”	 260-280	 65-70	 448-483	

“Intermediate”	 320-340	 80-85	 552-587	

“Premium”	 340-380	 85-95	 587-656	

“HE	Premium”	 380-400	 95-100	 656-691	
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Tensile	Tes/ng	(1-D	loading)	 Spherical	Contact	with	Elas/c	
Half-Space	(3-D	loading)	

Cylindrical	Contact	with	Elas/c	
Half-Space	(2-D	loading)	
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RCF	Development:			
Contact	Pressures,	TracHons	and	Stresses	

•  Cylindrical	contact	pressure	/	stress	
distribuHon	with	no	tangenHal	
tracHon	

•  Cylindrical	pressure	/	stress	
distribuHon	with	tangenHal	tracHon	

τzx

σz

σx τzx

σz

σx

TracHon	coefficient,	f		=	0	

TracHon	coefficient,	f		=	0.2	
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RCF	Development:	Shakedown	

Reduced	Stress	
(e.g.	wheel/rail	
profiles)	

Increased	Mat’l	
Strength	

Reduced	TracHon	Coefficient	
(e.g.	reduced	fricHon)	

0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	

1	

2	

3	

4	

5	

6	

7	

trac/on	coefficient	T/N	

lo
ad

	fa
ct
or
	

plas/c		
shakedown	

elas/c	shakedown	

elas/c	

ratchelng	

subsurface	 surface	

p0/ke	
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HydropressurizaHon:	effect	of	liquids	on	crack	growth	
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Wear	and	RCF		
wheel/rail	rig	test	results	

2,042,00

1,00

1,77

0,00
0,50
1,00
1,50
2,00
2,50

crack depth [mm] crack distance [mm]

di
st

an
ce

 [m
m

]

R260
R350HT

new	
dry	

FM	100k	
FM	400k	

new	
dry	

FM	100k	
FM	400k	

R260	 R350HT	

Dry	tests	crack	results	
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Recalling	Ques/on	#2:		How	can	we	determine	if	
there	is	a	risk	of	rolling	contact	fa/gue	(RCF)	
developing	under	a	given	set	of	vehicle/track	

condi/ons?	
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•  Consider	a	heavy	haul	railway	site,	where	heavy	axle	load	vehicles	
(286,000	lb	gross	weight)	with	a	typical	wheelbase	of	70”	traverse	a		
3	degree	curve	at	balance	speed.		

•  Wheel	/	rail	profiles	and	vehicle	steering	behavior	are	such	that	the	
curve	can	be	considered	“mild”	

•  The	contact	area	at	each	wheel	tread	/	low	rail	interface	is	
approximately	circular,	with	a	typical	radius	of	7mm.	

•  The	rail	steel	can	be	assumed	to	have	a	shear	yield	strength	of	k=70	ksi.	

•  The	rail	surface	is	dry,	with	a	nominal	COF	of	μ	=	0.6	

•  How	would	you	assess	the	risk	of	low	rail	RCF	formaHon	and	growth	
under	these	condiHons?	
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EsHmaHng	lateral	creepage,	tracHon	raHo	&	
contact	pressure:	

•  In	“mild”	curving,	leading	axle	angle	of	aaack:	
	 	α	~	arcsin(L/R)	~	L/R	=	0.0030	Rad	(3.0	mRad)	

	
•  Lateral	Creepage	at	low	rail	TOR	contact:	

	 	Vlat/V	~	2L/R	~	α	=	0.3%	
Angle	of	
Attack	(AoA)
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EsHmaHng	the	tracHon	raHo	(L/V)	

•  At	0.3%	creep:	
T/N	~	0.6	μ	
	

•  With	μ	=	0.6	
TracHon	RaHo	(T/N)	~	0.36	

*Note,	we	have	neglected	longitudinal	and	spin	creep…	
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Where	are	we	on	the	shakedown	map?	

0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	

1	

2	

3	
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trac/on	coefficient	T/N	
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ad

	fa
ct
or
	

plas/c		
shakedown	

elas/c	shakedown	

elas/c	

ratchelng	

subsurface	 surface	

p0/ke	

•  From	the	previous	slide		
T/N	~0.36	

•  We	previously	calculated		
Po	=	225	ksi	
	

•  With	K	=	70ksi,	
Po/K	=	3.21	
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QuesHons	&	Discussion	
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Overview	

•  Part	3	
–  TracHon/Creepage,	The	Third	Body	Layer	and	FricHon	Management	
–  Curving	Noise	
–  CorrugaHon	
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The	TracHon-Creepage	
Curve	

Rolling	DirecHon	

µN	

Adhesion	
Microslip	

Longitudinal	
Creepage	

75	



“Large”	PosiHve	(Longitudinal)		
Creepage	

Wheel	

Rail	

Third	Body	Layer	

Rω>V	
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Third	Body	at	Wheel/Rail	Contact	

•  Third	Body	is	made	up	of	iron	oxides,	sands,	wet	paste,	leaves	etc….	
•  Third	Body	separates	wheel	and	rail	surface,	accommodates	velocity	

differences	and	determines	wheel/rail	fricHon.	
•  Wheel/Rail	fricHon	depends	on	the	shear	properHes	/	composiHon	of	the	

third	body	layer.	

body	3	

Wheel	(body	1)	

Rail	(body	2)	

Interfacial	Layers		
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Third	Body	Layer	–	Micron	Scale	

Y.Berthier,	S.	Decartes,	M.Busquet	et	al.	(2004).	The	Role	and	Effects	of	the	third	body	in	the		
wheel	rail	interacHon.	Fa2gue	Fract.	Eng.	Mater	Struct.	27,	423-436	

Rail	 Wheel	
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FricHon	Management	
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Key	Points	
•  The	third	body	layer	accommodates	velocity	differences	between	the	

wheel	and	rail	(i.e.	creepage)	

•  FricHon	forces	are	determined	by	the	shear	properHes	of	the	third	body	
layer	and	its	response	to	shear	displacement	(creepage)	

•  FricHon	management	is	the	intenHonal	manipulaHon	of	the	shear	
properHes	of	the	third	body	layer.	
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Managing	fricHon:	two	disHnct	interfaces	

1.  Gauge	Face	/	Wheel	Flange	LubricaHon	

2.  Top	of	Rail	/	Wheel	Tread	FricHon	Control	
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Controlling	FricHon	at	the	Wheel/Rail	Interface	

Top of Rail (TOR) Friction 
Impacts: 
- Lateral Forces 
- Rail / Wheel Wear (TOR, Tread) 
- RCF Development 
- Fuel Efficiency 
- Squeal Noise  
- Flange Noise (indirect) 
- Corrugations 
- Hunting 
- Derailment Potential  
   (L/V, rail rollover) 
 

Gage Face (GF) Friction Impacts: 
- Rail / Wheel Wear (Gage Face, Flange) 
- RCF Development 
- Fuel Efficiency 
- Flange Noise 
- Derailment Potential (Wheel Climb) 
- Lateral Forces (indirect) 
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Not	Enough	

83	



Too	Much	
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Ideal	Targets	

Low rail High Rail 

µ<0.2 
TOR: µ=0.3-0.35 TOR: µ=0.3-0.35 
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Fric/on	Management	Approaches	

Applications 

Trackside Mobile 

GF  
Lubrication 

TOR Friction  
Modifiers 

Gauge/Flange TOR/Tread 

Liquid/Solid 
Lubrication 

Liquid/Solid 
Friction 

Modifiers 
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Trackside 
Gage Face Lubrication 

87	



88	



Trackside Top of Rail 
Friction Control 
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Mobile	Gage	Face	/	Wheel	Flange	LubricaHon	
Solid	SHck	(LCF)	LubricaHon	
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Solid	sHck	applicaHon	system		

    High speed train Metro system 

•  Mechanical bracket / applicator 

•  Solid stick applied by constant force spring.  
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Mobile	Top	of	Rail	FricHon	Management	
Car	&	LocomoHve	Mounted	
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Mobile	Gage	Face	LubricaHon	
(or	Top	of	Rail	FricHon	Control)	

Hi-Rail	Mounted	Delivery	Systems	
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Top	of	rail	fric/on	control	with	train	mounted	solid	s/ck	
tread	fric/on	modifier	
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Maximizing	system	performance	
•  CriHcal	areas	to	address	include:	

–  Assessment	and	ImplementaHon	of	SoluHons	

–  Keeping	units	filled	with	lubricants	/	fricHon	modifiers	

–  Ensuring	adequate	year-round	power	supply	&	charging	

–  Efficient	removal	/	reinstallaHon	to	accommodate	track	programs	

–  ProacHve	Maintenance	/	Efficient	response	to	equipment	damage	
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Assessment	&	ImplementaHon	
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Curving	Noise	
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Spectral	range	for	different	noise	types	

Noise type Frequency range, Hz 

Rolling 30 -2500 

Rumble (including corrugations) 200 - 1000 

Flat spots 50 -250 (speed dependant) 

Ground Borne Vibrations 30 - 200 

Top of rail squeal 1000 - 5000 

Flanging noise 5000 – 10000 
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Top of rail wheel squeal noise 
•  High pitched, tonal squeal (predominantly 1000 – 5000 Hz) 
•  Prevalent noise mechanism in “problem” curves, usually < 300m 

radius 
•  Related to both negative friction characteristics of Third Body at 

tread / top of rail interface and absolute friction level 
Ø  Stick-slip oscillations 

Flanging noise 
•  Typically a “buzzing” OR “hissing” sound, characterized by 

broadband high frequency components (>5000 Hz) 
•  Affected by:  

•  Lateral forces: related to friction on the top of the low rail 
•  Flanging forces: related to friction on top of low and high 

rails  
•  Friction at the flange / gauge face interface 
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Absolute	Fric/on	Levels	and	Posi/ve/Nega/ve	
Fric/on		
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* Replotted from: “Matsumoto a,  Sato Y, Ono H, Wang Y, Yamamoto Y, Tanimoto M & Oka Y, Creep force characteristics 

between rail and wheel on scaled model, Wear, Vol 253, Issues 1-2, July 2002, pp 199-203  
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Sound	spectral	distribuHon	for	different	wheel	/	rail	
systems	
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Effect	of	fricHon	characterisHcs		
on	spectral	sound	distribuHon:	Trams	
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Effect	of	fricHon	characterisHcs	
on	spectral	sound	distribuHon:	Trams	
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“Low	Frequency”	SHck-Slip	/	Noise	
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*	Video	used	with	
permission,	Brad	
Kerchof,	Norfolk	
Southern	



CorrugaHons	(Short	Pitch)	
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Perturbation Damage 
Mechanism 

Wavelength 
Fixing 

Mechanism 

CorrugaHon	formaHon:	common	threads	

+
Corrugations 
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Pinned-Pinned	corrugaHon	(“roaring	rail”)	

•  At	the	pinned-pinned	resonance,	rail	vibrates	as	it	were	a	beam	almost	
pinned	at	the	Hes	/	sleepers	

•  Highest	frequency	corrugaHon	type:	400	–	1200	Hz	
•  ModulaHon	at	He	/	sleeper	spacing	–	support	appears	dynamically	sHff	

so	verHcal	dynamic	loads	appear	greater	
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Ruung	
• Typically	appears	on	low	rail	
• Frequency	corresponds	to	second	torsional	
resonance	of	driven	wheelsets	

• Very	common	on	metros	

• Roll-slip	oscillaHons	are	central	to	mechanism	
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Recalling	Ques/on	#3:		How	is	the	noise	
captured	in	these	two	sound	files	

generated	at	the	wheel/rail	interface?	

•  File	#1:	

•  File	#2:	

111	



Summary	
•  Returning	to	our	objecHves,	we	have	reviewed:	

–  The	Wheel	/	Rail	Interface	and	Key	Terminology	
–  The	Contact	Patch	and	Contact	Pressures	
–  Creep,	TracHon	Forces	and	FricHon	
–  Wheelset	Geometry	and	EffecHve	Conicity		
–  Vehicle	Steering	and	Curving	Forces	
–  Wheel	and	Rail	Wear	Mechanisms		
–  Shakedown	and	Rolling	Contact	FaHgue	
–  The	Third	Body	Layer,	TracHon/Creepage	and	FricHon	Management	
–  Curving	Noise	
–  CorrugaHon	

•  The	intent	has	been	to	establish	a	framework	to	understand,	arHculate,	quanHfy	and	idenHfy	key	
phenomena	that	affect	the	pracHcal	operaHon,	economics	and	safety	of	heavy	haul	and	passenger	rail	
systems.	
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QuesHons	&	Discussion	
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